Respuesta :
Answer:
a.
With n = 25, [tex]\int_{0}^{1}e^{6 x}\ dx \approx 67.3930999748549[/tex]
With n = 50, [tex]\int_{0}^{1}e^{6 x}\ dx \approx 67.1519320308594[/tex]
b. [tex]\int_{0}^{1}e^{6 x}\ dx \approx 67.0715427161943[/tex]
c.
The absolute error in the trapezoid rule is 0.08047
The absolute error in the Simpson's rule is 0.00008
Step-by-step explanation:
a. To approximate the integral [tex]\int_{0}^{1}e^{6 x}\ dx[/tex] using n = 25 with the trapezoid rule you must:
The trapezoidal rule states that
[tex]\int_{a}^{b}f(x)dx\approx\frac{\Delta{x}}{2}\left(f(x_0)+2f(x_1)+2f(x_2)+...+2f(x_{n-1})+f(x_n)\right)[/tex]
where [tex]\Delta{x}=\frac{b-a}{n}[/tex]
We have that a = 0, b = 1, n = 25.
Therefore,
[tex]\Delta{x}=\frac{1-0}{25}=\frac{1}{25}[/tex]
We need to divide the interval [0,1] into n = 25 sub-intervals of length [tex]\Delta{x}=\frac{1}{25}[/tex], with the following endpoints:
[tex]a=0, \frac{1}{25}, \frac{2}{25},...,\frac{23}{25}, \frac{24}{25}, 1=b[/tex]
Now, we just evaluate the function at these endpoints:
[tex]f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1[/tex]
[tex]2f\left(x_{1}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281[/tex]
[tex]2f\left(x_{2}\right)=2f\left(\frac{2}{25}\right)=2 e^{\frac{12}{25}}=3.23214880438579[/tex]
...
[tex]2f\left(x_{24}\right)=2f\left(\frac{24}{25}\right)=2 e^{\frac{144}{25}}=634.696657835701[/tex]
[tex]f\left(x_{25}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735[/tex]
Applying the trapezoid rule formula we get
[tex]\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{50}(1+2.54249830064281+3.23214880438579+...+634.696657835701+403.428793492735)\approx 67.3930999748549[/tex]
- To approximate the integral [tex]\int_{0}^{1}e^{6 x}\ dx[/tex] using n = 50 with the trapezoid rule you must:
We have that a = 0, b = 1, n = 50.
Therefore,
[tex]\Delta{x}=\frac{1-0}{50}=\frac{1}{50}[/tex]
We need to divide the interval [0,1] into n = 50 sub-intervals of length [tex]\Delta{x}=\frac{1}{50}[/tex], with the following endpoints:
[tex]a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b[/tex]
Now, we just evaluate the function at these endpoints:
[tex]f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1[/tex]
[tex]2f\left(x_{1}\right)=2f\left(\frac{1}{50}\right)=2 e^{\frac{3}{25}}=2.25499370315875[/tex]
[tex]2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281[/tex]
...
[tex]2f\left(x_{49}\right)=2f\left(\frac{49}{50}\right)=2 e^{\frac{147}{25}}=715.618483417705[/tex]
[tex]f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735[/tex]
Applying the trapezoid rule formula we get
[tex]\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{100}(1+2.25499370315875+2.54249830064281+...+715.618483417705+403.428793492735) \approx 67.1519320308594[/tex]
b. To approximate the integral [tex]\int_{0}^{1}e^{6 x}\ dx[/tex] using 2n with the Simpson's rule you must:
The Simpson's rule states that
[tex]\int_{a}^{b}f(x)dx\approx \\\frac{\Delta{x}}{3}\left(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+2f(x_{n-2})+4f(x_{n-1})+f(x_n)\right)[/tex]
where [tex]\Delta{x}=\frac{b-a}{n}[/tex]
We have that a = 0, b = 1, n = 50
Therefore,
[tex]\Delta{x}=\frac{1-0}{50}=\frac{1}{50}[/tex]
We need to divide the interval [0,1] into n = 50 sub-intervals of length [tex]\Delta{x}=\frac{1}{50}[/tex], with the following endpoints:
[tex]a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b[/tex]
Now, we just evaluate the function at these endpoints:
[tex]f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1[/tex]
[tex]4f\left(x_{1}\right)=4f\left(\frac{1}{50}\right)=4 e^{\frac{3}{25}}=4.5099874063175[/tex]
[tex]2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281[/tex]
...
[tex]4f\left(x_{49}\right)=4f\left(\frac{49}{50}\right)=4 e^{\frac{147}{25}}=1431.23696683541[/tex]
[tex]f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735[/tex]
Applying the Simpson's rule formula we get
[tex]\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{150}(1+4.5099874063175+2.54249830064281+...+1431.23696683541+403.428793492735) \approx 67.0715427161943[/tex]
c. If B is our estimate of some quantity having an actual value of A, then the absolute error is given by [tex]|A-B|[/tex]
The absolute error in the trapezoid rule is
The calculated value is
[tex]\int _0^1e^{6\:x}\:dx=\frac{e^6-1}{6} \approx 67.0714655821225[/tex]
and our estimate is 67.1519320308594
Thus, the absolute error is given by
[tex]|67.0714655821225-67.1519320308594|=0.08047[/tex]
The absolute error in the Simpson's rule is
[tex]|67.0714655821225-67.0715427161943|=0.00008[/tex]