A dealership purchased a car and a truck and then sold them both. The purchasing cost of the truck was $8,000 greater than the purchasing cost of the car, and the selling price of the truck was $12,000 greater than the selling price of the car. The profit that the dealership made on the car was equal to 20 percent of its purchasing cost, and the profit that the dealership made on the truck was equal to 30 percent of its purchasing cost. If x is the purchasing cost, in dollars, of the car, then x satisfies which of the following equations? (Note: Profit equals selling price minus purchasing cost.)
A. 0.3x+8,000=0.2x+12,0000.3x+8,000=0.2x+12,000
B. 1.3x+8,000=1.2x+12,0001.3x+8,000=1.2x+12,000
C. 0.3(x+8,000)=0.2x+12,0000.3(x+8,000)=0.2x+12,000
D. 1.3(x+8,000)=1.2x+12,0001.3(x+8,000)=1.2x+12,000
E. 1.3(x+8,000)+12,000=1.2x

Respuesta :

Answer:

the answer is option C. 0.3(x+8,000)=0.2x+12,000

Step-by-step explanation:

Assume;

Purchase cost of car = x

Purchase cost of truck = y = 8000 + x

Selling price of truck = a =12000+b

Selling price of car = b

Since profit for truck is 30%, therefore;

a = 30%*y

a = (30/100)*y

a = 0.3y

Since profit for car is 20%, therefore;

b = 20%*x

b = (20/100)*x

b = 0.2x

Now take;

A = 0.3y

12000 + b = 0.3 (8000+x)

12000 + 0.2x = 0.3(8000+x)

OR

0.3(8000+x) = 0.2x +12000