Answer:
(a) [tex]R_5=9\ \Omega[/tex]
(b) Potential Difference = 11.584 V
(c) [tex]R_1=0.40\ \Omega[/tex]
Explanation:
Given:
[tex]\textrm{Current in A₁,}I_1=0.4\ A\\\textrm{Current in A₂,}I_2=0.64\ A\\R_2=5.6\ \Omega\\R_3=6.2\ \Omega\\R_4=8.2\ \Omega\\\textrm{EMF of the battery,}E= 12 V[/tex]
(a)
The resistances [tex]R_3\ and\ R_4[/tex] are in series. So, equivalent resistance is the sum of the two.
[tex]R_s=R_3+R_4=8.2+6.2=14.4\ \Omega[/tex]
Now, [tex]R_s\ and\ R_5[/tex] are in parallel. So, potential difference across both the terminals is same. Therefore,
[tex]I_1R_s=I_2R_5\\\\R_5=\frac{I_1}{I_2}R_s\\\\R_5=\frac{0.4}{0.64}\times 14.4=9\ \Omega[/tex]
(c)
Now, since the resistances are in parallel, the equivalent resistance is given as:
[tex]\frac{1}{R_p}=\frac{1}{R_s}+\frac{1}{R_5}\\\\R_p=\frac{R_s\times R_5}{R_s+R_5}\\\\R_p=\frac{14.4\times 9}{14.4+9}\\\\R_p=\frac{129.6}{23.4}=5.54\ \Omega[/tex]
Now, resistances [tex]R_1,R_2\ and\ R_p[/tex] are in series. Therefore, equivalent resistance is given as:
[tex]R_{eq}=R_1+R_2+R_p\\R_{eq}=R_1+5.6+5.54\\R_{eq}=R_1+11.14-----1[/tex]
Now, from Ohm's law, we know that,
[tex]E=(I_1+I_2)R_{eq}\\\\R_{eq}=\frac{E}{I_1+I_2}\\\\R_{eq}=\frac{12}{0.4+0.64}\\\\R_{eq}=11.54\ \Omega[/tex]
Plug in [tex]R_{eq}[/tex] value in equation (1). This gives,
[tex]11.54=R_1+11.14\\R_1=11.54-11.14=0.40\ \Omega[/tex]
(b)
Now, potential difference across the terminals of the battery is given as:
[tex]V=E-(I_1+I_2)R_1\\V=12-(0.4+0.64)0.4\\V=12-0.416=11.584\ V[/tex]