Answer:
The common difference of given AP is Option 2) -10.
Step-by-step explanation:
We are given the following information in the question:
First term of AP, a = 100
The sum of its first 6 terms = 5(the sum of its next six terms)
We have to find the common difference of AP.
The sum of n terms of AP is given by:
[tex]S_n = \dfrac{n}{2}\big(2a + (n-1)d\big)[/tex]
where a is the first term and d is the common difference.
Thus, we can write:
[tex]S_6 = 5 (S_{12}-S_6)\\\dfrac{6}{2}\big(200 + (6-1)d\big) = 5\bigg(\dfrac{12}{2}\big(200 + (12-1)d\big)-\dfrac{6}{2}\big(200 + (6-1)d\big)\bigg)\\\\600 + 15d =5(1200+66d-600-15d)\\600+15d=3000+255d\\2400 = -240d\\d = -10[/tex]
Thus, the common difference of given AP is -10.