Respuesta :
Answer:
The Amount invested at 7% interest is $12,855
The Amount invested at 6% interest = $1,102
Step-by-step explanation:
Given as :
The Total money invested = $13,957
Let The money invested at 7% = [tex]p_1[/tex] = $A
And The money invested at 6% = [tex]p_2[/tex] = $13957 - $A
Let The interest earn at 7% = [tex]I_1[/tex]
And The interest earn at 6% = [tex]I_2[/tex]
[tex]I_1[/tex] - [tex]I_2[/tex] = $833.73
Let The time period = 1 year
Now, From Simple Interest method
Simple Interest = [tex]\dfrac{\textrm principal\times \textrm rate\times \textrm time}{100}[/tex]
Or, [tex]I_1[/tex] = [tex]\dfrac{\textrm p_1\times \textrm 7\times \textrm 1}{100}[/tex]
Or, [tex]I_1[/tex] = [tex]\dfrac{\textrm A\times \textrm 7\times \textrm 1}{100}[/tex]
And
[tex]I_2[/tex] = [tex]\dfrac{\textrm p_2\times \textrm 6\times \textrm 1}{100}[/tex]
Or, [tex]I_2[/tex] = [tex]\dfrac{\textrm (13,957 - A)\times \textrm 6\times \textrm 1}{100}[/tex]
∵ [tex]I_1[/tex] - [tex]I_2[/tex] = $833.73
So, [tex]\dfrac{\textrm A\times \textrm 7\times \textrm 1}{100}[/tex] - [tex]\dfrac{\textrm (13,957 - A)\times \textrm 6\times \textrm 1}{100}[/tex] = $833.73
Or, 7 A - 6 (13,957 - A) = $833.73 × 100
Or, 7 A - $83,742 + 6 A = $83373
Or, 13 A = $83373 + $83742
Or, 13 A = $167,115
∴ A = [tex]\dfrac{167115}{13}[/tex]
i.e A = $12,855
So, The Amount invested at 7% interest = A = $12,855
And The Amount invested at 6% interest = ($13,957 - A) = $13,957 - $12,855
I.e The Amount invested at 6% interest = $1,102
Hence,The Amount invested at 7% interest is $12,855
And The Amount invested at 6% interest = $1,102 . Answer