Respuesta :

Answer:

The charge and the charge density on the surface of a conducting sphere is [tex]3.34\times 10^{-9}\ C[/tex] and [tex]1.18\times 10^{-8}\ C/m^2[/tex] respectively.

Explanation:

It is given that,

Radius of the conducting sphere, r = 0.15 m

Potential, V = 200 V

Potential on the surface of sphere is given by :

[tex]V=\dfrac{kq}{r}[/tex]

q is the charge on the sphere

[tex]q=\dfrac{Vr}{k}[/tex]

[tex]q=\dfrac{200\times 0.15}{9\times 10^9}[/tex]

[tex]q=3.34\times 10^{-9}\ C[/tex]

Charge per unit area is called charge density on the surface. it is given by :

[tex]\sigma=\dfrac{q}{A}[/tex]

[tex]\sigma=\dfrac{q}{4\pi r^2}[/tex]

[tex]\sigma=\dfrac{3.34\times 10^{-9}}{4\pi (0.15)^2}[/tex]

[tex]\sigma=1.18\times 10^{-8}\ C/m^2[/tex]

So, the charge and the charge density on the surface of a conducting sphere is [tex]3.34\times 10^{-9}\ C[/tex] and [tex]1.18\times 10^{-8}\ C/m^2[/tex] respectively. Hence, this is the required solution.