Two coils, held in fixed positions, have a mutual inductance of M = 0.0034 H. The current in the first coil is I(t) = I0sin(ωt), where I0 = 5.4 A, ω = 143 rad/s.


M = 0.0034 H I0 = 5.4 A ω = 143 rad/s


(a) Express the magnitude of the induced emf in the second coil, ε2, in terms of M and I.

(b) Express the magnitude of ε2 in terms of M, Io, and ω.

(c) Express the maximum value of |ε2|, εmax, in terms of M, I0, and ω.

(d) Calculate the numerical value of εmax in V.

Respuesta :

Answer

given,

I(t) = I₀ sin(ωt),  

M = 0.0034 H, I₀ = 5.4 A,  ω = 143 rad/s.

a) magnitude of induced emf in terms of M and I

    ε₂ = [tex]-M\dfrac{dI}{dt}[/tex]

b) magnitude of induced emf in terms of M, Io, and ω

      [tex]\dfrac{dI}{dt}=\dfrac{d}{dt}(I_0sin(\omega t))[/tex]

      [tex]\dfrac{dI}{dt}=I_0 \omega cos (\omega t)[/tex]

now,

      ε₂ = [tex]-MI_0 \omega cos (\omega t)[/tex]

c) maximum value of  |ε2|, εmax, in terms of M, I₀ , and ω.

       |ε₂| = [tex]|-MI_0 \omega cos (\omega t)|[/tex]

      for ε_{max} , cos ωt = 1

       ε_{max} = [tex]MI_0 \omega[/tex]  

d) numerical value of εmax in V.

      ε_{max} = [tex]MI_0 \omega[/tex]  

      ε_{max} = [tex]0.0034\times 5.4\times 143[/tex]  

      ε_{max}  = 2.63 V