Answer
given,
I(t) = I₀ sin(ωt),
M = 0.0034 H, I₀ = 5.4 A, ω = 143 rad/s.
a) magnitude of induced emf in terms of M and I
ε₂ = [tex]-M\dfrac{dI}{dt}[/tex]
b) magnitude of induced emf in terms of M, Io, and ω
[tex]\dfrac{dI}{dt}=\dfrac{d}{dt}(I_0sin(\omega t))[/tex]
[tex]\dfrac{dI}{dt}=I_0 \omega cos (\omega t)[/tex]
now,
ε₂ = [tex]-MI_0 \omega cos (\omega t)[/tex]
c) maximum value of |ε2|, εmax, in terms of M, I₀ , and ω.
|ε₂| = [tex]|-MI_0 \omega cos (\omega t)|[/tex]
for ε_{max} , cos ωt = 1
ε_{max} = [tex]MI_0 \omega[/tex]
d) numerical value of εmax in V.
ε_{max} = [tex]MI_0 \omega[/tex]
ε_{max} = [tex]0.0034\times 5.4\times 143[/tex]
ε_{max} = 2.63 V