Answer:
Option D. 124°
Step-by-step explanation:
step 1
Find the measure of angle AOC
The triangle AOC is an isosceles triangle, because OA=OC=radius
so
[tex]m\angle OAC=m\angle OCA=28^o[/tex]
Remember that the sum of the interior angles in any triangle must be equal to 180 degrees
[tex]m\angle OAC+m\angle OCA+m\angle AOC=180^o[/tex]
substitute the given values
[tex]28^o+28^o+m\angle AOC=180^o[/tex]
[tex]56^o+m\angle AOC=180^o[/tex]
[tex]m\angle AOC=180^o-56^o[/tex]
[tex]m\angle AOC=124^o[/tex]
step 2
Find the measure of arc AC
we know that
[tex]arc\ AC=m\angle AOC[/tex] ----> by central angle
we have
[tex]m\angle AOC=124^o[/tex]
therefore
[tex]arc\ AC=124^o[/tex]
step 3
we know that
The inscribed angle is half that of the arc comprising
[tex]m\angle ABC=\frac{1}{2}[arc\ AC][/tex]
[tex]m\angle ADC=\frac{1}{2}[arc\ AC][/tex]
so
[tex]m\angle ABC=m\angle ADC[/tex]
therefore
[tex]m\angle ABC+m\angle ADC=2m\angle ABC=arc\ AC[/tex]
substitute the value of the arc AC
[tex]m\angle ABC+m\angle ADC=124^o[/tex]