Respuesta :

Answer:

Option D. 124°

Step-by-step explanation:

step 1

Find the measure of angle AOC

The triangle AOC is an isosceles triangle, because OA=OC=radius

so

[tex]m\angle OAC=m\angle OCA=28^o[/tex]

Remember that the sum of the interior angles in any triangle must be equal to 180 degrees

[tex]m\angle OAC+m\angle OCA+m\angle AOC=180^o[/tex]

substitute the given values

[tex]28^o+28^o+m\angle AOC=180^o[/tex]

[tex]56^o+m\angle AOC=180^o[/tex]

[tex]m\angle AOC=180^o-56^o[/tex]

[tex]m\angle AOC=124^o[/tex]

step 2

Find the measure of arc AC

we know that

[tex]arc\ AC=m\angle AOC[/tex] ----> by central angle

we have

[tex]m\angle AOC=124^o[/tex]

therefore

[tex]arc\ AC=124^o[/tex]

step 3

we know that

The inscribed angle is half that of the arc comprising

[tex]m\angle ABC=\frac{1}{2}[arc\ AC][/tex]

[tex]m\angle ADC=\frac{1}{2}[arc\ AC][/tex]

so

[tex]m\angle ABC=m\angle ADC[/tex]

therefore

[tex]m\angle ABC+m\angle ADC=2m\angle ABC=arc\ AC[/tex]

substitute the value of the arc AC

[tex]m\angle ABC+m\angle ADC=124^o[/tex]