Respuesta :
Answer:
[tex]y+6=\frac{5}{2}(x+2)[/tex]
y plus 6 equals StartFraction 5 Over 2 EndFraction left-parenthesis x plus 2 right parenthesis.
Step-by-step explanation:
we have the ordered pairs
[tex](-4,-11),(-2,-6),(6,14),(10,24)[/tex]
step 1
Find the slope
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
take the points
[tex](-4,-11),(-2,-6)[/tex]
substitute the given values
[tex]m=\frac{-6+11}{-2+4}[/tex]
[tex]m=\frac{5}{2}[/tex]
step 2
Find the equation in point slope form
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=\frac{5}{2}[/tex]
[tex](x1,y1)=(-2,-6)[/tex]
substitute in the equation
[tex]y-(-6)=\frac{5}{2}(x-(-2))[/tex]
[tex]y+6=\frac{5}{2}(x+2)[/tex]
The answer is y = (5/2)x - 1
A linear equation in slope intercept form is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
Given the points represented in the columns, this points can be represented in pairs as (x, y) as:
(-4, -11), (-2, -6), (6, 14) and (10, 24)
Using the points (-2, -6) and (10, 24), we can determine the equation of the line using:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1} (x-x_1)\\\\y-(-6)=\frac{24-(-6)}{10-(-2)} (x-(-2))\\\\y+6=\frac{5}{2}(x+2) \\\\y=\frac{5}{2}x-1[/tex]
Therefore the equation of the line in slope-intercept form is y = (5/2)x - 1
Find out more at: https://brainly.com/question/13911928