Respuesta :
Answer:
x=4.8473 cups
Step-by-step explanation:
Concentration of Liquids
It measures the amount of substance present in a mixture, often expressed as %. If there is an volume x of a substance in a total volume mix of y, the concentration is given by
[tex]\displaystyle C=\frac{x}{y}[/tex]
It we take a sample of that mixture, we must consider that we are getting only the substance, but all the mixture (assumed it has been uniformly mixed). For example, if we take a glass of liquid from a 80% mixture of juice, the glass will also have a 80% of juice.
Let's solve the problem sequentially. At first, let's assume all the container is full of x cups of juice. Its concentration is 100%. Now let's take 1 cup of pure juice and replace it by 1 cup of pure water. The new amount of juice in the container is
x-1 cups of juice.
The new concentration is
[tex]\displaystyle \frac{x-1}{x}[/tex]
The boy takes a second cup of liquid, but this time it's not pure juice, it has a mixture of juice and water with a concentration computed above. Now the amount of juice is
[tex]\displaystyle x-1-\frac{x-1}{x}[/tex] cups of juice.
Simplifying, the cups of juice are
[tex]\displaystyle \frac{\left (x-1\right)^2}{x}[/tex]
The new concentration is
[tex]\displaystyle \frac{\left (x-1\right)^2}{x^2}[/tex]
For the third time, we now have
[tex]\displaystyle \frac{\left (x-1\right)^2}{x}-\frac{\left (x-1\right)^2}{x^2}[/tex] cups of juice.
Simplifying, the final amount of juice is
[tex]\displaystyle \frac{\left (x-1\right)^3}{x^2}[/tex]
And the final concentration is
[tex]\displaystyle \frac{\left (x-1\right)^3}{x^3}[/tex]
According to the conditions of the question, this must be equal to 50% (0.5)
[tex]\displaystyle \frac{\left (x-1\right)^3}{x^3}=0.5[/tex]
Taking cubic roots
[tex]\displaystyle \sqrt[3]{\frac{\left (x-1\right)^3}{x^3}}=\sqrt[3]{0.5}[/tex]
[tex]\displaystyle \frac{\left (x-1\right)}{x}=\sqrt[3]{0.5}[/tex]
Operating and joining like terms
[tex]\displaystyle x-\sqrt[3]{0.5}\ x=1[/tex]
Solving for x
[tex]\displaystyle x=\frac{1}{1-\sqrt[3]{0.5}}[/tex]
[tex]x=4.8473\ cups[/tex]
Let's test our result
Final concentration:
[tex]\displaystyle \frac{\left (4.8473-1\right)^3}{4.8473^3}=0.5[/tex]