Respuesta :

DeanR

[I'm still thinking sorry]

I'm assuming 2x-12 is the angle measure of DAC in degrees.

Let p=AB=AD, q=AC

By the Law of Cosines,

22² = p² + q² - 2pq cos 48°

q² - 2pq cos 48° + p² - 22² = 0

We also require by the triangle inequality

CD+AD < AC

16 + p < q

Let's set them equal and see where we are.

q=p+16

(p+16)² - 2p(p+16) cos 48° + p² - 22² = 0

p≈12.2125,

q≈28.2125

16² = p² + q² - 2 pq cos DAC

16² = 12.2125² + 28.2125² - 2 (12.2125)(28.2125) cos DAC

cos DAC = (12.2125² + 28.2125²  - 16²)/(2 (12.2125)(28.2125) ) = 1

That's a surprise, DAC maxes out at a right angle

90 = 2x - 12

102 = 2x

x = 51

Answer: 6 < x < 51