Respuesta :

Answer:

The graph of the inverse function is the same that the graph of the original function

Step-by-step explanation:

step 1

Find the equation of the function in the graph

Let

f(x) ---> the function in the graph

we know that

Is a linear function

take the points (0,6) and (6,0)

Find the slope of the linear function

[tex]m=(0-6)/(6-0)\\m=-1[/tex]

Find the the equation of the linear function in slope intercept form

[tex]f(x)=mx+b[/tex]

we have

[tex]m=-1[/tex]

[tex]b=6[/tex] ---> the y-intercept is given

substitute

[tex]f(x)=-x+6[/tex]

step 2

Find the inverse of the function f(x)

Let

y=f(x)

[tex]y=-x+6[/tex]

Exchange the variables (x for y and y for x)

[tex]x=-y+6[/tex]

Isolate the variable y

[tex]y=-x+6[/tex]

Let

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=-x+6[/tex]

[tex]f^{-1}(x)=f(x)[/tex]

In this problem the graph of the inverse function is the same that the graph of the original function