Respuesta :
Answer:
The trigonometrical expression is sin² A + sin A - 2 cos A - 2 cos A × sin A = 0
Step-by-step explanation:
Given Trigonometrical function as :
[tex]\frac{sin A - cos A + 1}{sin A + cos A - 1}[/tex] = 2 (1 + cosec A)
Or, [tex]\frac{sin A + ( 1 - cos A)}{sin A - (1 - cos A)}[/tex] = 2 (1 + cosec A)
, Now, rationalizing
[tex]\frac{(sin A + ( 1 - cos A)) \times (sin A + (1 - cosA))}{(sin A - (1 - cos A))\times (sin A + (1 - cos A))}[/tex] = 2 (1 + cosec A)
Or, [tex]\frac{(sin A + (1 - cos A))^{2}}{sin^{2} - (1-cos A)^{2}}[/tex] = 2 ( 1 + [tex]\dfrac{1}{\textrm sinA}[/tex]
Or, [tex]\frac{sin^{2}A + (1 - cosA)^{2} + 2 \times sin A \times (1 - cos A)}{sin^{2}A - (1 + cos^{2}A - 2 cos A)}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, [tex]\frac{sin^{2}A + 1 + cos^{2}A - 2 cos A + 2 sin A - 2 sin A cos A}{sin^{2}A - 1 - cos^{2}A +2 cos A}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, [tex]\frac{sin^{2}A + 1 + cos^{2}A - 2 cos A + 2 sin A - 2 sin A cos A}{sin^{2}A - (sin^{2}A + cos^{2}A) - cos^{2}A +2 cos A}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, [tex]\frac{2- 2 cos A + 2 sin A - 2 sin A cos A}{- 2cos^{2}A +2 cos A}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, [tex]\frac{1- cos A + sin A - sin A cos A}{- cos^{2}A + cos A}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, [tex]\frac{(1- cos A) + sin A (1-cos A)}{cos A(1 - cos A)}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, [tex]\frac{(1- cos A) (1 + sinA)}{cos A(1 - cos A)}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, [tex]\frac{(1 + sinA)}{(cos A)}[/tex] = 2 ( [tex]\dfrac{1 + sin A}{sin A}[/tex]
Or, sin A + sin² A = 2 cos A (1 + sin A)
Or, sin A + sin² A = 2 cos A + 2 cos A × sin A
Or, sin² A + sin A - 2 cos A - 2 cos A × sin A = 0
So,The trigonometrical expression is sin² A + sin A - 2 cos A - 2 cos A × sin A = 0 Answer
