Answer:
a) [tex]v'=\sqrt{2} \times v[/tex]
Speed will become √(2) times the initial speed.
b) [tex]v'=\frac{1}{2}\times v[/tex]
i.e Speed of the pulse becomes half of the initial speed.
c) [tex]v'=2 \times v[/tex]
i.e Speed of the pulse becomes twice of the initial speed.
d) [tex]v'= v[/tex]
i.e Speed of the pulse remains the same as initial.
Explanation:
Given:
We know the relation between the velocity of wave pulse in a string, tension in the string and its linear mass density as:
[tex]v=\sqrt{\frac{T}{\mu} }[/tex] initially
where:
[tex]T=[/tex] tension in the string
[tex]\mu=\frac{m}{l}[/tex] is the linear mass density as mass per unit length of the string.
a)
Speed of the pulse if the tension is doubled:
[tex]v'=\sqrt{\frac{2T}{\mu} }[/tex]
[tex]v'=\sqrt{2} \times v[/tex]
Speed will become √(2) times the initial speed.
b)
Speed of the pulse if the mass of the string is quadrupled:
We firstly find μ for this string.
[tex]\mu'=\frac{4m}{l}[/tex]
i.e
[tex]\mu'=4\mu[/tex]
Now,
[tex]v'=\sqrt{\frac{T}{4\mu} }[/tex]
[tex]v'=\frac{1}{2}\times v[/tex]
i.e Speed of the pulse becomes half of the initial speed.
c)
Speed of the pulse if the length of the string is quadrupled:
We firstly find μ for this string.
[tex]\mu'=\frac{m}{4l}[/tex]
i.e
[tex]\mu'=\frac{ \mu}{4}[/tex]
Now,
[tex]v'=\sqrt{\frac{T}{\frac{m}{4l} }[/tex]
[tex]v'=2 \times v[/tex]
i.e Speed of the pulse becomes twice of the initial speed.
d)
Speed of the pulse if both the length & the mass of the string is quadrupled:
We firstly find μ for this string.
[tex]\mu'=\frac{4m}{4l}[/tex]
i.e
[tex]\mu'=\mu[/tex]
Now,
[tex]v'=\sqrt{\frac{T}{\mu} }[/tex]
[tex]v'= v[/tex]
i.e Speed of the pulse remains the same as initial.