Respuesta :
Answer:
12, 10, 6 (descending order)
Step-by-step explanation:
[tex]ax^2+bx+c=0[/tex] has real and rational roots if [tex]b^2-4ac[/tex] is a nonnegative perfect square. [tex]b^2-4ac[/tex] is called the discriminant.
Let's calculate the discriminant of [tex]x^2-7x+c=0[/tex].
[tex]b^2-4ac[/tex]
[tex](-7)^2-4(1)(c)[/tex]
[tex]49-4c[/tex]
We want [tex]49-4c[/tex] to be be positive or a zero perfect square.
So let's first solve the inequality:
[tex]49-4c \ge 0[/tex]
Add [tex]4c[/tex] on both sides:
[tex]49 \ge 4c[/tex]
[tex]4c \le 49[/tex]
Divide both sides be 4:
[tex]c \le \frac{49}{4}[/tex]
[tex]c \le 12.25[/tex].
We know [tex]c[/tex] has to be a positive integer.
So we only need to evaluate [tex]49-4c[/tex] for 12 numbers.
[tex]c=1[/tex] returns [tex]49-4(1)=49-4=45[/tex] which is not a perfect square.
[tex]c=2[/tex] returns [tex]49-4(2)=49-8=41[/tex] which is not a perfect square.
[tex]c=3[/tex] returns [tex]49-4(3)=49-12=37[/tex] which is not a perfect square.
[tex]c=4[/tex] returns [tex]49-4(4)=49-16=33[/tex] which is not a perfect square.
[tex]c=5[/tex] returns [tex]49-4(5)=49-20=29[/tex] which is not a perfect square.
[tex]c=6[/tex] returns [tex]49-4(6)=49-24=25[/tex] which is a perfect square.
[tex]c=7[/tex] returns [tex]49-4(7)=49-28=21[/tex] which is not a perfect square.
[tex]c=8[/tex] returns [tex]49-4(8)=49-32=17[/tex] which is not a perfect square.
[tex]c=9[/tex] returns [tex]49-4(9)=49-36=13[/tex] which is not a perfect square.
[tex]c=10[/tex] returns [tex]49-4(10)=49-40=9[/tex] which is a perfect square.
[tex]c=11[/tex] returns [tex]49-4(11)=49-44=5[/tex] which is not a perfect square.
[tex]c=12[/tex] returns [tex]49-4(12)=49-48=1[/tex] which is a perfect square.