Answer : The energy removed must be, -67.7 kJ
Solution :
The process involved in this problem are :
[tex](1):C_6H_6(g)(425.0K)\rightarrow C_6H_6(g)(353.0K)\\\\(2):C_6H_6(g)(353.0K)\rightarrow C_6H_6(l)(353.0K)\\\\(3):C_6H_6(l)(353.0K)\rightarrow C_6H_6(l)(335.0K)[/tex]
The expression used will be:
[tex]\Delta H=[m\times c_{p,g}\times (T_{final}-T_{initial})]+m\times \Delta H_{vap}+[m\times c_{p,l}\times (T_{final}-T_{initial})][/tex]
where,
[tex]\Delta H[/tex] = heat released by the reaction = ?
m = mass of benzene = 125 g
[tex]c_{p,g}[/tex] = specific heat of gaseous benzene = [tex]1.06J/g^oC[/tex]
[tex]c_{p,l}[/tex] = specific heat of liquid benzene = [tex]1.73J/g^oC[/tex]
[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = [tex]33.9kJ/mole=33900J/mole=\frac{33900J/mole}{78.11g/mole}J/g=434.0J/g[/tex]
Molar mass of benzene = 78.11 g/mole
Now put all the given values in the above expression, we get:
[tex]\Delta H=[125g\times 1.06J/g.K\times (353.0-(425.0))K]+125g\times -434.0J/g+[125g\times 1.73J/g.K\times (335.0-353.0)K][/tex]
[tex]\Delta H=-67682.5J=-67.7kJ[/tex]
Therefore, the energy removed must be, -67.7 kJ