Respuesta :
Answer:
a) [tex]P(\bar X<90)=P(Z<\frac{90-99.9}{\frac{30}{\sqrt{38}}})=P(Z<-2.03)= 0.0212[/tex]
b)[tex]P(98<\bar X<105)=P(-0.39<Z<1.05)=P(Z<1.05)-P(Z<-0.39)=0.8531-0.3483=0.5049[/tex]
c) [tex]P(\bar X<112)=P(Z<\frac{112-99.9}{\frac{30}{\sqrt{38}}})=P(Z<2.49)= 0.9936[/tex]
d) [tex]P(93<\bar X<96)=P(-1.42<Z<-0.80)=P(Z<-0.80)-P(Z<-1.42)=0.2119-0.0778=0.1341[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(99.9,30)[/tex]
Where [tex]\mu=99.9[/tex] and [tex]\sigma=30[/tex]
We select a random sample of n=36. And from the central limit theorem we know that the distribution for the sample is given by:
[tex]\bar X \sim N(\mu =99.9 , \frac{\sigma}{\sqrt{n}}= \frac{30}{\sqrt{38}}=4.87)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
If we apply this formula to our probability we got this:
[tex]P(\bar X<90)=P(\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{90-99.9}{\frac{30}{\sqrt{38}}})[/tex]
[tex]=P(Z<\frac{90-99.9}{\frac{30}{\sqrt{38}}})=P(Z<-2.03)= 0.0212[/tex]
Part b
For this case we want this probability:
[tex]P(98<\bar X<105)=P(\frac{98-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{105-\mu}{\frac{\sigma}{\sqrt{n}}})[/tex]
[tex]=P(\frac{98-99.9}{\frac{30}{\sqrt{38}}}<Z<\frac{105-99.9}{\frac{30}{\sqrt{38}}})=P(-0.39<Z<1.05)[/tex]
And we can find this probability on this way:
[tex]P(-0.39<Z<1.05)=P(Z<1.05)-P(Z<-0.39)[/tex]
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
[tex]P(-0.39<Z<1.05)=P(Z<1.05)-P(Z<-0.39)=0.8531-0.3483=0.5049[/tex]
Part c
If we apply this formula to our probability we got this:
[tex]P(\bar X<112)=P(\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{112-99.9}{\frac{30}{\sqrt{38}}})[/tex]
[tex]P(\bar X<112)=P(Z<\frac{112-99.9}{\frac{30}{\sqrt{38}}})=P(Z<2.49)= 0.9936[/tex]
Part d
For this case we want this probability:
[tex]P(93<\bar X<96)=P(\frac{93-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{96-\mu}{\frac{\sigma}{\sqrt{n}}})[/tex]
[tex]=P(\frac{93-99.9}{\frac{30}{\sqrt{38}}}<Z<\frac{96-99.9}{\frac{30}{\sqrt{38}}})=P(-1.42<Z<-0.80)[/tex]
And we can find this probability on this way:
[tex]P(-1.42<Z<-0.80)=P(Z<-0.80)-P(Z<-1.42)[/tex]
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
[tex]P(-1.42<Z<-0.80)=P(Z<-0.80)-P(Z<-1.42)=0.2119-0.0778=0.1341[/tex]