Answer:
[tex]\frac{dP}{dt} = rP(1 - \frac{P}{K}) = 0.017P(1 - \frac{P}{16})[/tex]
Step-by-step explanation:
The logistic function of population growth, that is, the solution of the differential equation is as follows:
[tex]P(t) = \frac{KP_{0}e^{rt}}{K + P_{0}(e^{rt} - 1)}[/tex]
We use this equation to find the value of r.
In this problem, we have that:
[tex]K = 16, P_{0} = 2, P(50) = 4[/tex]
So we find the value of r.
[tex]P(t) = \frac{KP_{0}e^{rt}}{K + P_{0}(e^{rt} - 1)}[/tex]
[tex]4 = \frac{16*2e^{50r}}{16 + 2*(e^{50r} - 1)}[/tex]
[tex]4 = \frac{32e^{50r}}{14 + 2e^{50r}}[/tex]
[tex]56 + 8e^{50r} = 32e^{50r}}[/tex]
[tex]24e^{50r} = 56[/tex]
[tex]e^{50r} = 2.33[/tex]
Applying ln to both sides of the equality
[tex]50r = 0.8459[/tex]
[tex]r = 0.017[/tex]
So
The differential equation is
[tex]\frac{dP}{dt} = rP(1 - \frac{P}{K}) = 0.017P(1 - \frac{P}{16})[/tex]