Answer:
x = 2
Step-by-step explanation:
Given
[tex](3+4\sqrt{5})(2-x\sqrt{5})=2\sqrt{5}-34[/tex]
First, open the brackets using distributive property:
[tex](3+4\sqrt{5})(2-x\sqrt{5})\\ \\=3(2-x\sqrt{5})+4\sqrt{5}(2-x\sqrt{5})\\ \\=6-3x\sqrt{5}+8\sqrt{5}-4\sqrt{5}x\sqrt{5}\\ \\=6-3\sqrt{5}x+8\sqrt{5}-20x\ [\text{since} \sqrt{5}\cdot \sqrt{5}=5, \ \text{then }4\sqrt{5}\cdot \sqrt{5}=20][/tex]
Now, combine the like terms:
[tex]6-3\sqrt{5}x+8\sqrt{5}-20x\\ \\(6-20x)+\sqrt{5}(8-3x)[/tex]
Since [tex](3+4\sqrt{5})(2-x\sqrt{5})=2\sqrt{5}-34,[/tex] you have that
[tex]6-20x=-34\Rightarrow 20x=40,\ x=2\\ \\8-3x=2\Rightarrow 3x=6,\ x=2[/tex]