Suppose that a parallel-plate capacitor has circular plates with radius R = 25 mm and a plate separation of 4.7 mm. Suppose also that a sinusoidal potential difference with a maximum value of 160 V and a frequency of 60 Hz is applied across the plates: that is, V = (160 V) sin[2π(60 Hz)t].(a) FindBmax(R), the maximum value of the induced magnetic field that occurs at r = R. (b) PlotBmax(r) for 0 < r < 10 cm.

Respuesta :

Answer:

a) [tex]B_{max} = 1.784*10^{-12}[/tex]

Explanation:

Given paraeters are:

R = 25 cm

d = 4.7 mm

f = 60 Hz

[tex]V_m[/tex] = 160 V

a) [tex]V = V_msin(2\pi ft)[/tex]

Where [tex]f = 60[/tex] Hz and [tex]V_m = 160[/tex] V

[tex]E =V/d= \frac{V_msin(2\pi ft)}{d}[/tex]

For [tex]r = R[/tex]

[tex]A = \pi R^2[/tex]

Since [tex]\Phi_E = EA[/tex]

[tex]\Phi_E=\frac{\pi R^2V_msin(2\pi ft) }{d}[/tex]

From Ampere's Law:

[tex]\int B.ds = \mu_0\epsilon_0\frac{d\Phi_E}{dt} + \mu_0I_{encl}[/tex] where [tex]I_{encl}=0[/tex]

So at [tex]r = R[/tex],

[tex]B.2\pi R = \mu_0\epsilon_0\frac{d\Phi_E}{dt}\\B.2\pi R = \mu_0\epsilon_0\frac{2\pi^2fR^2V_mcos(2\pi ft)}{d}\\B = \frac{\mu_0\epsilon_0\pi fRV_mcos(2\pi ft)}{d}[/tex]

For maximum B, cos(2πft) = 1. Hence,

[tex]B_{max}=\frac{\mu_0\epsilon_0\pi fRV_m}{d}=\frac{4\pi*10^{-7}*8.85*10^{-12}*\pi*60*0.025*160}{4.7*10^{-3}}=1.784*10^{-12}[/tex] T

b) From r = 0 to r = R = 0.025 m, by Ampere's Law, the equation will be:

[tex]B = \frac{\mu_0\epsilon_0\pi fR^2V_m}{rd}[/tex]

From r = R = 0.025 m to r = 0.1 m, by Ampere's Law, the equation will be:

[tex]B = \frac{\mu_0\epsilon_0\pi fRV_m}{d}[/tex]

The plot is given in the attachment.

Ver imagen erturkmemmedli
ACCESS MORE