Answer:
a) [tex]B_{max} = 1.784*10^{-12}[/tex]
Explanation:
Given paraeters are:
R = 25 cm
d = 4.7 mm
f = 60 Hz
[tex]V_m[/tex] = 160 V
a) [tex]V = V_msin(2\pi ft)[/tex]
Where [tex]f = 60[/tex] Hz and [tex]V_m = 160[/tex] V
[tex]E =V/d= \frac{V_msin(2\pi ft)}{d}[/tex]
For [tex]r = R[/tex]
[tex]A = \pi R^2[/tex]
Since [tex]\Phi_E = EA[/tex]
[tex]\Phi_E=\frac{\pi R^2V_msin(2\pi ft) }{d}[/tex]
From Ampere's Law:
[tex]\int B.ds = \mu_0\epsilon_0\frac{d\Phi_E}{dt} + \mu_0I_{encl}[/tex] where [tex]I_{encl}=0[/tex]
So at [tex]r = R[/tex],
[tex]B.2\pi R = \mu_0\epsilon_0\frac{d\Phi_E}{dt}\\B.2\pi R = \mu_0\epsilon_0\frac{2\pi^2fR^2V_mcos(2\pi ft)}{d}\\B = \frac{\mu_0\epsilon_0\pi fRV_mcos(2\pi ft)}{d}[/tex]
For maximum B, cos(2πft) = 1. Hence,
[tex]B_{max}=\frac{\mu_0\epsilon_0\pi fRV_m}{d}=\frac{4\pi*10^{-7}*8.85*10^{-12}*\pi*60*0.025*160}{4.7*10^{-3}}=1.784*10^{-12}[/tex] T
b) From r = 0 to r = R = 0.025 m, by Ampere's Law, the equation will be:
[tex]B = \frac{\mu_0\epsilon_0\pi fR^2V_m}{rd}[/tex]
From r = R = 0.025 m to r = 0.1 m, by Ampere's Law, the equation will be:
[tex]B = \frac{\mu_0\epsilon_0\pi fRV_m}{d}[/tex]
The plot is given in the attachment.