Respuesta :

Answer:

Option (a) is the correct answer.

Step-by-step explanation:

[tex][(243)^{-\frac{1}{3}}]^{-\frac{3}{5}[/tex]

We know that,

[tex](a^m)^n = a^{mn}[/tex]

Then,

[tex][(243)^{-\frac{1}{3}}]^{-\frac{3}{5}[/tex]

[tex]=(243)^{(-\frac{1}{3})\times (-\frac{1}{5})[/tex]

[tex]=(243)^{\frac{1}{5}[/tex]

[tex]=(3\times3\times3\times3\times3)^{\frac{1}{5}[/tex]

[tex]=(3^5)^{\frac{1}{5}[/tex]

Now, again using

[tex](a^m)^n = a^{mn}[/tex]

So,

[tex](3^5)^{\frac{1}{5}}=3^{5\times\frac{1}{5}}=3^1=3[/tex]

Hence,

[tex][(243)^{-\frac{1}{3}}]^{-\frac{3}{5}}=3[/tex]

Therefore, option (a) is the correct answer.

Answer:

a) 3

Step-by-step explanation:

243 =  3⁵

(243^-1/3)^-3/5 = (3⁵^-1/3)^-3/5

         = 3⁻⁵/³*⁻³/⁵ = 3

RELAXING NOICE
Relax