Respuesta :
Answer:
Option (a) is the correct answer.
Step-by-step explanation:
[tex][(243)^{-\frac{1}{3}}]^{-\frac{3}{5}[/tex]
We know that,
[tex](a^m)^n = a^{mn}[/tex]
Then,
[tex][(243)^{-\frac{1}{3}}]^{-\frac{3}{5}[/tex]
[tex]=(243)^{(-\frac{1}{3})\times (-\frac{1}{5})[/tex]
[tex]=(243)^{\frac{1}{5}[/tex]
[tex]=(3\times3\times3\times3\times3)^{\frac{1}{5}[/tex]
[tex]=(3^5)^{\frac{1}{5}[/tex]
Now, again using
[tex](a^m)^n = a^{mn}[/tex]
So,
[tex](3^5)^{\frac{1}{5}}=3^{5\times\frac{1}{5}}=3^1=3[/tex]
Hence,
[tex][(243)^{-\frac{1}{3}}]^{-\frac{3}{5}}=3[/tex]
Therefore, option (a) is the correct answer.
Answer:
a) 3
Step-by-step explanation:
243 = 3⁵
(243^-1/3)^-3/5 = (3⁵^-1/3)^-3/5
= 3⁻⁵/³*⁻³/⁵ = 3
