Answer:
1. D
2. A
3. C
Step-by-step explanation:
1. Given
[tex]6-\dfrac{1}{2}z=\dfrac{2}{3}[/tex]
Multiply the equation by 6:
[tex]6\cdot 6-6\cdot \dfrac{1}{2}z=6\cdot\dfrac{2}{3}\\ \\36-3z=4[/tex]
Hence,
[tex]-3z=4-36\\ \\-3z=-32\\ \\3z=32\\ \\x=\dfrac{32}{3}[/tex]
2. Given
[tex]\dfrac{3y}{2}+\dfrac{ky}{4}=6[/tex]
Multiply the equation by 4:
[tex]\dfrac{3y}{2}\cdot 4+\dfrac{ky}{4}\cdot 4=6\cdot 4\\ \\6y+ky=24[/tex]
Use distributive property:
[tex]y(6+k)=24\\ \\y=\dfrac{24}{6+k}[/tex]
3. Given
[tex]3-(w+2)>4+2w[/tex]
Open the brackets using distributive property:
[tex]3-w-2>4+2w\\ \\1-w>4+2w[/tex]
Hence,
[tex]1-w>4+2w[/tex]