Answer:
[tex]f'(2)=\lim_{h \rightarrow 0} \frac{-1}{4(4+h)}[/tex]
Step-by-step explanation:
The definition of derivative is:
[tex]f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}[/tex]
So it asks us not to evaluate the limit part but to simplify the fraction part.
So let's focus on just:
[tex]\frac{f(x+h)-f(x)}{h}[/tex]
We are given [tex]f(x)=\frac{1}{x+2}[/tex].
So [tex]f(x+h)=\frac{1}{(x+h)+2}[/tex] (I just replaced the [tex]x[/tex]'s with [tex](x+h)[/tex]'s.)
Now since we want to find it a [tex]x=2[/tex]. I'm going to replace my x's with 2:
So instead we will look at:
[tex]\frac{f(2+h)-f(2)}{h}[/tex]
[tex]\frac{\frac{1}{(2+h)+2}-\frac{1}{2+2}}{h}[/tex]
Let's simplify some of the addition that we can in the denominators of the mini-fractions:
[tex]\frac{\frac{1}{4+h}-\frac{1}{4}}{h}[/tex]
Now division by [tex]h[/tex] can be written as multiplication by [tex]\frac{1}{h}[/tex]:
[tex]\frac{1}{h}(\frac{1}{4+h}-\frac{1}{4})[/tex]
Let's combine the fractions inside the ( ).
I will multiply the first fraction by [tex]1=\frac{4}{4}[/tex].
I will multiply the second fraction by [tex]1=\frac{4+h}{4+h}[/tex].
We are going to do this so we have the same denominator:
[tex]\frac{1}{h}(\frac{4}{4(4+h)}-\frac{4+h}{4(4+h)})[/tex]
Now we have the same denominator inside the ( ) and can combine those fractions:
[tex]\frac{1}{h}(\frac{4-(h+4)}{4(4+h)})[/tex]
Let's simplify the numerator in the ( ).
[tex]\frac{1}{h}(\frac{-h}{4(4+h)})[/tex]
Now you should see a common factor to cancel. That is we have that [tex]\frac{h}{h}=1[/tex]. So we can write that:
[tex]\frac{1}{h}(\frac{-h}{4(4+h)})=\frac{-1}{4(4+h)}[/tex]
So the answer we are looking for is:
[tex]f'(2)=\lim_{h \rightarrow 0} \frac{-1}{4(4+h)}[/tex]