Respuesta :

frika

Answer:

32 at x = 2

Step-by-step explanation:

If the sum of two positive numbers x and y is 3, then

[tex]x+y=3\Rightarrow y=3-x[/tex]

and

[tex]x^3+12xy=x^3+12x(3-x)=x^3-12x^2+36x[/tex]

To find the absolute maximum of the function

[tex]f(x)=x^3-12x^2+36x[/tex]

find the derivative

[tex]f'(x)=3x^2-24x+36[/tex]

and equate it to 0:

[tex]3x^2-24x+36=0\\ \\x^2-8x+12=0\\ \\D=(-8)^2-4\cdot 12=64-48=16\\ \\x_{1,2}=\dfrac{-(-8)\pm \sqrt{16}}{2\cdot 1}=\dfrac{8\pm 4}{2}=6,\ 2[/tex]

For [tex]x<2,\ f'(x)>0[/tex] - the function f(x) increases

For [tex]2<x<6,\ f'(x)<0[/tex] - the function f(x) decreases

For [tex]x>6,\ f'(x)>0[/tex] - the function f(x) increases

So, x = 2 is maximum, x = 6 is minimum

The maximum value of [tex]x^3+12xy[/tex] is

[tex]2^3+12\cdot 2\cdot (3-2)=8+24=32[/tex]

RELAXING NOICE
Relax