Answer:
t = 1.068 s
Step-by-step explanation:
given,
a(t) =- k v(t)
speed of the object decreases from 800 ft/s to 700 ft/s
distance = 1400 ft
time for deceleration = ?
a(t) =- k v(t)
[tex]\dfrac{dv}{dt}= - kv[/tex]
[tex]\dfrac{dv}{v}= - kdt[/tex]
integrating both side
[tex]\int_{800}^{700}\dfrac{dv}{v}= - k\int dt[/tex]
[tex]ln(\dfrac{7}{8})=-kt[/tex]
[tex]t = -\dfrac{1}{k}ln(\dfrac{7}{8})[/tex]..........(1)
since,
[tex]v = v_1e^{-kt}[/tex]
[tex]\dfrac{ds}{dt} = 800e^{-kt}[/tex]
[tex]\int ds= 800\int_0^t e^{-kt}dt[/tex]
[tex]1400= -\dfrac{800}{k}[e^{-kt}-e^0][/tex]
from equation 1
[tex]k= -\dfrac{8}{14}[\dfrac{7}{8}-1][/tex]
[tex]k= \dfrac{1}{8}[/tex]
putting value of k in equation (1)
[tex]t = -8ln(\dfrac{7}{8})[/tex]
t = 1.068 s