Answer:
[tex]W_f[/tex]= 124.05 rad/s
Explanation:
Using the conservation of the angular momentum:
[tex]L_i = L_f[/tex]
so:
[tex]I_iW_i = I_fW_f[/tex]
where [tex]I_i[/tex] is the initial moment of inertia, [tex]W_i[/tex] the initial angular velocity, [tex]I_f[/tex] the final moment of inerta and [tex]W_f[/tex] the final angular velocity.
Note: Wi = 3.95 rev/s = 24.81 rad/s
Then, replacing values, we get:
[tex](12.5)(24.81rad/s) = (2.5)W_f[/tex]
Finally, solving for [tex]W_f[/tex]:
[tex]W_f[/tex]= 124.05 rad/s