Respuesta :

Answer:

0 m/s

Explanation:

given,

x(t)=t^3+3 t (t-3)+10

velocity

[tex]v = \dfrac{dx}{dt}[/tex]

[tex]\dfrac{dx}{dt} =\dfrac{d}{dt}(t^3+3 t (t-3)+10)[/tex]

[tex]v=3t^2 +3t + (t-3)3[/tex].............(1)

now, differentiating both side for minimum velocity calculation

[tex]\dfrac{dv}{dt}=\dfrac{d}{dt}(3t^2 +3t + (t-3)3)[/tex]

[tex]\dfrac{dv}{dt}=6t + 6[/tex]

now, equating derivative equal to zero

[tex]\dfrac{dv}{dt}=0[/tex]

[tex]6t + 6=0[/tex]

t = -1

again differentiating

[tex]\dfrac{d^2v}{dt^2}=+ve[/tex]

hence, at t = -1 velocity will be minimum

now, inserting value of t in equation 1

[tex]v=3(1)^2 +3\times 1 + (1-3)3[/tex]

[tex]v=6-6[/tex]

 v = 0 m/s

hence, minimum velocity is equal to 0 m/s

RELAXING NOICE
Relax