Answer:
0 m/s
Explanation:
given,
x(t)=t^3+3 t (t-3)+10
velocity
[tex]v = \dfrac{dx}{dt}[/tex]
[tex]\dfrac{dx}{dt} =\dfrac{d}{dt}(t^3+3 t (t-3)+10)[/tex]
[tex]v=3t^2 +3t + (t-3)3[/tex].............(1)
now, differentiating both side for minimum velocity calculation
[tex]\dfrac{dv}{dt}=\dfrac{d}{dt}(3t^2 +3t + (t-3)3)[/tex]
[tex]\dfrac{dv}{dt}=6t + 6[/tex]
now, equating derivative equal to zero
[tex]\dfrac{dv}{dt}=0[/tex]
[tex]6t + 6=0[/tex]
t = -1
again differentiating
[tex]\dfrac{d^2v}{dt^2}=+ve[/tex]
hence, at t = -1 velocity will be minimum
now, inserting value of t in equation 1
[tex]v=3(1)^2 +3\times 1 + (1-3)3[/tex]
[tex]v=6-6[/tex]
v = 0 m/s
hence, minimum velocity is equal to 0 m/s