Answer:
2763.53411 m/s
Explanation:
M = Mass of Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
[tex]v_i[/tex] = Launch velocity
[tex]v_f[/tex] = Final velocity = 500 m/s
h = Altitude = 400 km
m = Mass of satellite
As the energy of the system is conserved we have
[tex]U_i+K_i=U_f+K_f\\\Rightarrow -\dfrac{GMm}{r}+\dfrac{1}{2}mv_i^2=-\dfrac{GMm}{r+h}+\dfrac{1}{2}mv_f^2\\\Rightarrow -\dfrac{GM}{r}+\dfrac{1}{2}v_i^2=-\dfrac{GM}{r+h}+\dfrac{1}{2}v_f^2\\\Rightarrow \dfrac{1}{2}v_i^2=\dfrac{GM}{r}-\dfrac{GM}{r+h}+\dfrac{1}{2}v_f^2\\\Rightarrow v_i=\sqrt{2GM(\dfrac{h}{r(r+h)})+v_f^2}\\\Rightarrow v_i=\sqrt{2\times 6.67\times 10^{-11}\times 5.972\times 10^{24}(\dfrac{400000}{6.371\times 10^6(6.371\times 10^6+400000)})+500^2}\\\Rightarrow v_i=2763.53411\ m/s[/tex]
The launch speed of the satellite should be 2763.53411 m/s