To develop this problem we will use the DeBroglie relationship for which the wavelength is considered as
[tex]\lambda = \frac{h}{mv}[/tex]
Where,
h = Planck's constant
m = mass
v = Velocity
[tex]\lambda[/tex] = Wavelength
Rearranging the equation we have that the speed would be
[tex]v = \frac{h}{m\lambda}[/tex]
Our given values are considered
[tex]\lambda = 400nm = 4*10^{-7}m[/tex]
[tex]h = 6.626*10^{-34} J\cdot s[/tex]
[tex]m = 1.673*10^{-24}g = 1.673*10^{-27}kg[/tex]
The value of the mass varies, therefore its speed would be given as:
Proton [tex](m=1.673*10^{-27}kg)[/tex]
[tex]v = \frac{6.626*10^{-34}}{(1.673*10^{-27})(4*10^{-7})}[/tex]
[tex]v = 0.99m/s[/tex]
Neutron [tex](m=1.675*10^{-27}kg)[/tex]
[tex]v = \frac{6.626*10^{-34}}{(1.675*10^{-27})(4*10^{-7})}[/tex]
[tex]v = 0.988m/s[/tex]
Electron [tex](m=9.109*10^{-31}kg)[/tex]
[tex]v = \frac{6.626*10^{-34}}{(9.109*10^{-31})(4*10^{-7})}[/tex]
[tex]v = 1818.53m/s[/tex]
Alpha particle [tex](m=6.645*10^{-27} kg)[/tex]
[tex]v = \frac{6.626*10^{-34}}{(6.645*10^{-27} )(4*10^{-7})}[/tex]
[tex]v = 0.249m/s[/tex]