The line has equation
[tex]\vec r(t)=(4,-4,8)+(-1,4,-3)t[/tex]
where [tex]t[/tex] is any real number. [tex](-1,4,-3)t[/tex] is the line containing all scalar multiples of the vector (-1, 4, -3); we add (4, -4, 8) to shift the line so that it passes through this point while remaining parallel to the the line.
To get the symmetric form, we have
[tex]\begin{cases}x(t)=4-t\\y(t)=-4+4t\\z(t)=8-3t\end{cases}[/tex]
Solving for [tex]t[/tex] in each equation gives the symmetric form,
[tex]t=\boxed{4-x=\dfrac{y+4}4=\dfrac{8-z}3}[/tex]
The line has intercepts in the coordinate planes wherever either the [tex]x[/tex], [tex]y[/tex], or [tex]z[/tex] coordinate is 0.
[tex]xy[/tex]-plane:
[tex]z=0\implies\begin{cases}4-x=\frac83\\\frac{y+4}4=\frac83\end{cases}\implies\left(\dfrac43,\dfrac{20}3,0\right)[/tex]
[tex]yz[/tex]-plane:
[tex]x=0\implies\begin{cases}\frac{y+4}4=4\\\frac{8-z}3=4\end{cases}\implies\left(0,12,-4\right)[/tex]
[tex]xz[/tex]-plane:
[tex]y=0\implies\begin{cases}4-x=1\\\frac{8-z}3=1\end{cases}\implies\left(3,0,5\right)[/tex]