Respuesta :
To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:
[tex]v = \sqrt{\frac{2GM}{R}}[/tex]
Where,
G = Gravitational Universal Constant
M = Mass of Planet
r = Radius of the planet ('h' would be the orbit from the surface)
The escape velocity is
[tex]v = 14.9km/h = 14900m/s[/tex]
Through this equation we can find the mass of the Planet in function of the distance, therefore
[tex]M = \frac{v^2R}{2G}[/tex]
[tex]M = \frac{14900^2R}{2(6.67*10^{-11})}[/tex]
[tex]M = 16.64*10^{17}R[/tex]
The orbital velocity is
[tex]v_o = \sqrt{\frac{GM}{R+h}}[/tex]
[tex]9200^2 = \frac{(6.67*10^{-11})(16.64*10^{17})R}{R+1500*10^3}[/tex]
[tex]11.1*10^7R = (R+15000*10^3)(9200)^2[/tex]
[tex]2.64*10^7R = 12.69*10^{13}[/tex]
[tex]R = 4.81*10^6m[/tex]
The time period of revolution is,
[tex]T = \frac{2\pi(R+h)}{v_o}[/tex]
[tex]T = \frac{2\pi(4.81*10^6+1.5*10^6)}{9200}[/tex]
[tex]T = 4307s[/tex]
[tex]T = 72min = 1hour12min[/tex]
Therefore the orbital period of the satellite is closes to 1 hour and 12 min