Respuesta :
Answer:
Equation of tangent plane to given parametric equation is:
[tex]\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}[/tex]
Step-by-step explanation:
Given equation
[tex]r(u, v)=u cos (v)\hat{i}+u sin (v)\hat{j}+v\hat{k}[/tex]---(1)
Normal vector tangent to plane is:
[tex]\hat{n} = \hat{r_{u}} \times \hat{r_{v}}\\r_{u}=\frac{\partial r}{\partial u}\\r_{v}=\frac{\partial r}{\partial v}[/tex]
[tex]\frac{\partial r}{\partial u} =cos(v)\hat{i}+sin(v)\hat{j}\\\frac{\partial r}{\partial v}=-usin(v)\hat{i}+u cos(v)\hat{j}+\hat{k}[/tex]
Normal vector tangent to plane is given by:
[tex]r_{u} \times r_{v} =det\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\cos(v)&sin(v)&0\\-usin(v)&ucos(v)&1\end{array}\right][/tex]
Expanding with first row
[tex]\hat{n} = \hat{i} \begin{vmatrix} sin(v)&0\\ucos(v) &1\end{vmatrix}- \hat{j} \begin{vmatrix} cos(v)&0\\-usin(v) &1\end{vmatrix}+\hat{k} \begin{vmatrix} cos(v)&sin(v)\\-usin(v) &ucos(v)\end{vmatrix}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u(cos^{2}v+sin^{2}v)\hat{k}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u\hat{k}\\[/tex]
at u=5, v =π/3
[tex]=\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k}[/tex] ---(2)
at u=5, v =π/3 (1) becomes,
[tex]r(5, \frac{\pi}{3})=5 cos (\frac{\pi}{3})\hat{i}+5sin (\frac{\pi}{3})\hat{j}+\frac{\pi}{3}\hat{k}[/tex]
[tex]r(5, \frac{\pi}{3})=5(\frac{1}{2})\hat{i}+5 (\frac{\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}[/tex]
[tex]r(5, \frac{\pi}{3})=\frac{5}{2}\hat{i}+(\frac{5\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}[/tex]
From above eq coordinates of r₀ can be found as:
[tex]r_{o}=(\frac{5}{2},\frac{5\sqrt{3}}{2},\frac{\pi}{3})[/tex]
From (2) coordinates of normal vector can be found as
[tex]n=(\frac{\sqrt{3} }{2},-\frac{1}{2},1)[/tex]
Equation of tangent line can be found as:
[tex](\hat{r}-\hat{r_{o}}).\hat{n}=0\\((x-\frac{5}{2})\hat{i}+(y-\frac{5\sqrt{3}}{2})\hat{j}+(z-\frac{\pi}{3})\hat{k})(\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k})=0\\\frac{\sqrt{3}}{2}x-\frac{5\sqrt{3}}{4}-\frac{1}{2}y+\frac{5\sqrt{3}}{4}+z-\frac{\pi}{3}=0\\\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}[/tex]