Answer:
[tex]\frac{dh}{dt}=10\sqrt{2}[/tex]=14.14 [cm/min]
Explanation:
If we have an isosceles right triangle we can use the Pythagoras theorem to find the hypotenuse:
[tex]h^{2}=x^{2}+x^{2}=2x^{2}[/tex] (1)
[tex]h=\sqrt{2x^{2}}=x\sqrt{2}[/tex] (2)
From equation (2) let's take the derivative with respect to time (t):
[tex] \frac {dh}{dt}=\frac {dx(\sqrt {2})}{dt} [/tex]
[tex] \frac {dh}{dt}=\frac {dx}{dt}\sqrt {2} [/tex]
dx/dt is the increasing rate of the triangle legs, it is dx/dt = 10 [cm/min].
[tex]\frac{dh}{dt}=10\sqrt{2}[/tex]=14.14 [cm/min] (3)
(3) is the hypotenuse increasing in length, and when x = 2 cm, using equation (2), h will be equal to 2.83 cm.
Hava a nice day!