Respuesta :
a. If a vector field [tex]\vec F[/tex] is conservative, then its curl is 0:
[tex]\mathrm{curl}\vec F=\left(\dfrac{\partial(\cos y\sin x)}{\partial z}-\dfrac{\partial(z)}{\partial y}\right)\,\vec\imath-\left(\dfrac{\partial(z)}{\partial x}-\dfrac{\partial(\sin y\cos x)}{\partial z}\right)\,\vec\jmath+\left(\dfrac{\partial(\cos y\sin x)}{\partial x}-\dfrac{\partial(\sin y\cos x)}{\partial y}\right)\,\vec k=\boxed{\vec 0}[/tex]
(Note that, generally, if the curl is 0, the field need not be conservative!)
b. If there is a scalar function [tex]f[/tex] for which [tex]\nabla f=\vec F[/tex], then
[tex]\dfrac{\partial f}{\partial x}=\sin y\cos x[/tex]
[tex]\dfrac{\partial f}{\partial y}=\cos y\sin x[/tex]
[tex]\dfrac{\partial f}{\partial z}=z[/tex]
From these equations we find (first by integrating both sides of the first equation with respect to [tex]x[/tex])
[tex]f(x,y,z)=\sin y\sin x+g(y,z)[/tex]
[tex]\implies\dfrac{\partial f}{\partial y}=\cos y\sin x=\cos y\sin x+\dfrac{\partial g}{\partial y}\implies\dfrac{\partial g}{\partial y}=0\implies g(y,z)=h(z)[/tex]
[tex]\implies\dfrac{\partial f}{\partial z}=z=\dfrac{\mathrm dh}{\mathrm dz}\implies h(z)=\dfrac{z^2}2+C[/tex]
So we have
[tex]\boxed{f(x,y,z)=\sin y\sin x+\dfrac{z^2}2+C}[/tex]
c. By the gradient theorem (i.e. fundamental theorem of calculus), we have for any path [tex]C[/tex] beginning at [tex](x_1,y_1,z_1)[/tex] and terminating at [tex](x_2,y_2,z_2)[/tex]
[tex]\displaystyle\int_C\nabla f\cdot\mathrm d\vec r=f(x_2,y_2,z_2)-f(x_1,y_1,z_1)[/tex]
so that
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=f\left(\frac\pi2,\frac\pi2,2\right)-f(0,1,0)=\boxed3[/tex]