Answer:
Option b) Standard deviation is [tex]\sigma =\sqrt{8}\approx 2.83[/tex] is correct
Step-by-step explanation:
Given data is
x [tex] \bar{x}[/tex] [tex]x-\bar{x}[/tex] [tex](x-\bar{x})^2[/tex]
5 4 1 1
8 4 4 16
2 4 -2 4
1 4 -3 9
7 4 3 9
1 4 -3 9
____________________
[tex]\sum (x-\bar{x})^2=48[/tex]
_______________________
Standard deviation [tex]\sigma =\sqrt{\frac{\sum (x-\bar{x})^2}{n}}[/tex] where n= number of samples=6
Standard deviation [tex]\sigma=\sqrt{\frac{48}{6}}[/tex]
[tex]\sigma=\sqrt{8}[/tex]
Therefore Standard deviation is [tex]\sigma=\sqrt{8}\approx 2.83[/tex]
Therefore Option b) is correct