[tex]\vec F(x,y,z)=z\tan^{-1}(y^2)\,\vec\imath+z^3\ln(x^2+7)\,\vec\jmath+z\,\vec k[/tex]
has divergence
[tex]\nabla\cdot\vec F(x,y,z)=\dfrac{\partial(z\tan^{-1}(y^2))}{\partial x}+\dfrac{\partial(z^3\ln(x^2+7))}{\partial y}+\dfrac{\partial z}{\partial z}=1[/tex]
If [tex]S[/tex] includes the disk [tex]x^2+y^2=25[/tex] which is contained in the paraboloid, then by the divergence theorem the flux is
[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^5\int_2^{27-r^2}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta=\boxed{\frac{625\pi}2}[/tex]
If the disk is not part of [tex]S[/tex], then subtract the flux of [tex]\vec F[/tex] across the disk (with downward orientation; call it [tex]D[/tex]). Parameterize [tex]D[/tex] by
[tex]\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath+2\,\vec k[/tex]
where [tex]0\le u\le5[/tex] and [tex]0\le v\le2\pi[/tex], with normal vector
[tex]\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}=-u\,\vec k[/tex]
Then the flux of [tex]\vec F[/tex] across [tex]D[/tex] is
[tex]\displaystyle\iint_D\vec F\cdot\mathrm d\vec S=-2\int_0^{2\pi}\int_0^5u\,\mathrm du\,\mathrm dv=-50\pi[/tex]
which makes the flux across [tex]S[/tex], [tex]\dfrac{625\pi}2-50\pi=\boxed{\frac{615\pi}2}[/tex].