Respuesta :
Answer:
[tex]2.17960625\ eV[/tex]
0.77842 V
Explanation:
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
[tex]\lambda[/tex] = Wavelength
Work function is given by
[tex]W=\dfrac{hc}{\lambda}\\\Rightarrow W=\dfrac{6.626\times 10^{-34}\times 3\times 10^8}{570\times 10^{-9}}\\\Rightarrow W=3.48737\times 10^{-19}\ J=\dfrac{3.48737\times 10^{-19}}{1.6\times 10^{-19}}=2.17960625\ eV[/tex]
The work function is [tex]2.17960625\ eV[/tex]
Stopping voltage is given by
[tex]eV_0=hf-W_0\\\Rightarrow eV_0=\dfrac{6.626\times 10^{-34}\times 3\times 10^8}{1.6\times 10^{-19}\times 420\times 10^{-9}}-2.17960625\\\Rightarrow eV_0=0.77842\ eV\\\Rightarrow V_0=0.77842\ V[/tex]
The stopping voltage required is 0.77842 V
Answer:
(a) 3.49 x 10^-19 J
(b) 0.78 V
Explanation:
threshold wavelength, λo = 570 nm = 570 x 10^-9 m
(A) the work function of the metal is given by
[tex]\phi =\frac{hc}{\lambda _{0}}[/tex]
where h is the Plank's constant and c be the speed of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
[tex]\phi =\frac{6.63\times 10^{-34}\times 3 \times 10^{8}}{570\times 10^{-9}}[/tex]
Ф = 3.49 x 10^-19 J
(B) λ = 420 nm = 420 x 10^-9 m
Use Einstein relation
[tex]\frac{hc}{\lambda }=\phi +eV_{0}[/tex]
where, Vo is the stopping potential
[tex]\frac{6.63\times10^{-19}\times 3\times 10^{8}}{420\times 10^{-9} }=3.49 \times 10^{-19} +eV_{0}[/tex]
eVo = 1.246 x 10^-19
Vo = 0.78 V