tj2509
contestada

What is the perimeter of △LMN?

8 units
9 units
6 + StartRoot 10 EndRoot units
8 + StartRoot 10 EndRoot units

What is the perimeter of LMN 8 units 9 units 6 StartRoot 10 EndRoot units 8 StartRoot 10 EndRoot units class=

Respuesta :

Answer:

The perimeter of △LMN is 8 + [tex]\sqrt{10}[/tex]

Step-by-step explanation:

Step 1: Finding the length of LM

Distance formula  = [tex]\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]

here

[tex]x_1[/tex]= 2

[tex]x_2[/tex]= -2

[tex]y_1[/tex]= 4

[tex]y_2[/tex]=1

LM  = [tex]\sqrt{(-2-2)^2 +(1-4)^2}[/tex]

LM  = [tex]\sqrt{(-4)^2 +(-3)^2}[/tex]

LM  = [tex]\sqrt{16 +9)}[/tex]

LM  = [tex]\sqrt{25}[/tex]

LM  = 5

Step 2: Finding the length of MN

Distance formula  = [tex]\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]

here

[tex]x_1[/tex]= -2

[tex]x_2[/tex]= -1

[tex]y_1[/tex]=   1

[tex]y_2[/tex]= 4

LM  = [tex]\sqrt{(-1-(-2))^2 +(4 - 1)^2}[/tex]

LM  = [tex]\sqrt{(11+2)^2 +(3)^2}[/tex]

LM  = [tex]\sqrt{1 +9)}[/tex]

LM  = [tex]\sqrt{10}[/tex]

Step 3 : Finding the length of NL

Distance formula  = [tex]\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]

here

[tex]x_1[/tex]= -1

[tex]x_2[/tex]= 2

[tex]y_1[/tex]=   4

[tex]y_2[/tex]= 4

NL  = [tex]\sqrt{(2-(-1))^2 +(4 - 4)^2}[/tex]

NL  = [tex]\sqrt{(3)^2 +0}[/tex]

NL  = [tex]\sqrt{9 +0}[/tex]

B  = [tex]\sqrt{9 }[/tex]

NL = 3

Step 4: Finding the perimeter of the triangle

Perimeter =  length of LM +   length of MN +  length of NL

Perimeter = 5 + [tex]\sqrt{10}[/tex] + 3

Perimeter = 8 + [tex]\sqrt{10}[/tex]

Answer:

its D on edg

Step-by-step explanation:

ACCESS MORE