Answer:
We will collect 11.17 liters of oxygen gas.
Explanation:
[tex]N=n\times N_A[/tex]
Where:
N = Number of particles / atoms/ molecules
n = Number of moles
[tex]N_A=6.022\times 10^{23} mol^{-1}[/tex] = Avogadro's number
We have:
Molecules of oxygen gas N = [tex]3.00\times 10^{23} [/tex]
n =?
[tex]n=\frac{N}{N_A}=\frac{3.00\times 10^{23}}{6.022\times 10^{23} mol^{-1}}[/tex]
n = 0.4982 moles of oxygen
Using ideal gas equation:
PV = nRT
where,
P = Pressure of gas = 1 atm (at STP)
V = Volume of gas = 10 L
n = number of moles of gas = ?
R = Gas constant = 0.0821 L.atm/mol.K
T = Temperature of gas = 273.15 K (at STP)
Putting values in above equation, we get:
[tex]V=\frac{nRT}{P}=\frac{0.4982 mol\times 0.0821 atm L/mol K\times 273.15 K}{1 atm}[/tex]
V = 11.17 L
We will collect 11.17 liters of oxygen gas.