According to Inc, 79% of job seekers used social media in their job search in 2018. Many believe this number is inflated by the proportion of 22- to 30-year-old job seekers who use social media in their job search. Suppose a survey of 22- to 30-year-old job seekers showed that 314 of the 370 respondents use social media in their job search. In addition, 281 of the 370 respondents indicated they have electronically submitted a resume to an employer. (a) Conduct a hypothesis test to determine if the results of the survey justify concluding the proportion of 22- to 30-year-old job seekers who use social media in their job search exceeds the proportion of the population that use social media in their job search. Use α = 0.05. State the null and alternative hypothesis. (Enter != for ≠ as needed.)

Respuesta :

Answer:

Null hypothesis:[tex]p\leq 0.79[/tex]  

Alternative hypothesis:[tex]p > 0.79[/tex]  

[tex]z=\frac{0.849 -0.79}{\sqrt{\frac{0.79(1-0.79)}{370}}}=2.786[/tex]  

[tex]p_v =P(z>2.786)=0.00267[/tex]  

So the p value obtained was a very low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the true proportion is higher than 0.79.  

Step-by-step explanation:

1) Data given and notation

n=750 represent the random sample taken

X=314 represent the respondents that use social media in their job search.

[tex]\hat p=\frac{314}{370}=0.849[/tex] estimated proportion of respondents that use social media in their job search

[tex]p_o=0.79[/tex] is the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

2) Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion is hgiher than 0.79.:  

Null hypothesis:[tex]p\leq 0.79[/tex]  

Alternative hypothesis:[tex]p > 0.79[/tex]  

When we conduct a proportion test we need to use the z statisticc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

3) Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.849 -0.79}{\sqrt{\frac{0.79(1-0.79)}{370}}}=2.786[/tex]  

4) Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

[tex]p_v =P(z>2.786)=0.00267[/tex]  

So the p value obtained was a very low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the true proportion is higher than 0.79.  

ACCESS MORE