Respuesta :
Explanationhe rotational kinetic energy is
[tex]K_{r} =\frac{1}{2} Iω^{2}[/tex]
The moment of inertia I for a sphere is ( 2 / 5 ) m r ^2
. Substituting this in the equation yields
Kr=1/2( ( 2 / 5 ) m r ^2 )([tex](\frac{v}{r})^{2}[/tex]
1/5mv^2
1/5*5.97 × 10 ^24 *(2[tex]\pi[/tex]*6.38*10^6/86400)^2
2.57 × 10 ^29 J
b. kinetic energy of the sun
K.E=1/2*mv^2
the distance from the earth to the sun is given as
.
Answer:
a. 7.43 × 10³⁴ J b. 3.51 × 10³⁸ J
Explanation:
a. The gravitational force of attraction of a body on the surface of the earth equals the centripetal force on it due to the earth.
So, GMm/R² = mRω²
ω = √(GM/R³) where ω = angular speed of the earth. M = mass of earth = 5.972 × 10²⁴ kg, R = radius of earth = 6.4 × 10⁶ m and G = gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg²
The rotational kinetic energy of earth K.E = 1/2Iω² where I = rotational inertia = 2/5MR²
K.E = 1/2Iω²
= 1/2 × 2/5MR² × GM/R³
= GM²/5R
= 6.67 × 10⁻¹¹ Nm²/kg² × (5.972 × 10²⁴ kg)² /(6.4 × 10⁶ m × 5)
= 7.43 × 10³⁴ J
b. Similarly, the rotational kinetic energy of the earth around the sun is
K.E = GM²/5R where M = mass of sun = 1.989 × 10³⁰ kg and R = distance of earth from sun = 1.5047 × 10¹¹ m
K.E = GM²/5R
= 6.67 × 10⁻¹¹ Nm²/kg² × (1.989 × 10³⁰ kg)² / (1.5047 × 10¹¹ m × 5)
= 3.5073 × 10³⁸ J ≅ 3.51 × 10³⁸ J