Answer:
[tex]\Delta V=1.0911\ L[/tex]
Explanation:
Given:
Now the increment in the volume of the container:
[tex]\Delta V_s=V_i.\beta_s.\Delta T[/tex]
[tex]\Delta V_s=53\times 35\times 10^{-6}\times (27-4.5) [/tex]
[tex]\Delta V_s=41737.5\times 10^{-6}\ L[/tex]
and the increment in the volume of the gasoline:
[tex]\Delta V_g=V_i.\beta_g.\Delta T[/tex]
[tex]\Delta V_g=53\times 950\times 10^{-6}\times (27-4.5) [/tex]
[tex]\Delta V_g=1132875\times 10^{-6}\ L[/tex]
Hence the difference in the increment of the two volumes:
[tex]\Delta V=\Delta V_g-\Delta V_s[/tex]
[tex]\Delta V=(1132875-41737.5)\times 10^{-6}[/tex]
[tex]\Delta V=1.0911\ L[/tex] of the gasoline spills out of the container in this case.