Respuesta :

Answer:

The minimum is the point (-3,2)

Step-by-step explanation:

we have

[tex]x^{2} +6x+11[/tex]

This is a vertical parabola open upward (because the leading coefficient is positive)

The vertex is a minimum

Convert the equation in vertex form

Complete the square

[tex]f(x)=(x^{2} +6x+3^2)+11-3^2[/tex]

[tex]f(x)=(x^{2} +6x+9)+11-9[/tex]

[tex]f(x)=(x^{2} +6x+9)+2[/tex]

Rewrite as perfect squares

[tex]f(x)=(x+3)^{2}+2[/tex] ----> equation in vertex form

The vertex is the point (-3,2)

therefore

The minimum is the point (-3,2)

ACCESS MORE