Answer:
0.00000011 m
Explanation:
n = 0 for minimum thickness
t = Thickness
[tex]n_2[/tex] = Refractive index of the film = 1.25
[tex]\lambda[/tex] = Wavelength = [tex]550\times 10^{-9}\ m[/tex]
We have the formula
[tex]2n_2t=(2n+1)\dfrac{\lambda}{2}[/tex]
[tex]\\\Rightarrow t=(2n+1)\dfrac{\lambda}{4n_2}\\\Rightarrow t=(2\times 0+1)\dfrac{550\times 10^{-9}}{4\times 1.25}\\\Rightarrow t=0.00000011\ m[/tex]
The minimum thickness of the film is 0.00000011 m