Respuesta :
[tex]2x^4 + x^3 - x^2 +54x - 56[/tex] expression represents the area of Dylan’s room
Solution:
Given that,
Length of room = [tex]x^2 -2x+8[/tex]
Width of room = [tex]2x^2 + 5x - 7[/tex]
To find: Expression that the area (lw) of Dylan’s room
Since bedroom is generally of rectangular shape, we can use area of rectangle
The area of rectangle is given as:
[tex]\text {area of rectangle }=\text { length } \times \text { width }[/tex]
Substituting the given expressions of length and width,
[tex]area = (x^2 -2x+8)(2x^2 + 5x - 7)[/tex]
We multiply each term inside first parenthesis with each term inside the second parenthesis.
So it becomes,
[tex]2x^4 + 5x^3 - 7x^2 -4x^3 -10x^2 +14x +16x^2 +40x - 56[/tex]
Now combine like terms,
[tex]2x^4 + x^3 - x^2 +54x - 56[/tex]
Thus the above expression represents the area of Dylan’s room