In braking an automobile, the friction between the brake drums and brake shoes converts the car's kinetic energy into heat. If a 1 500-kg automobile traveling at 30 m/s brakes to a halt, how much does the temperature rise in each of the four 8.0-kg brake drums in °C? (The specific heat of each iron brake drum is 448 J/kg⋅°C).

Respuesta :

To solve this problem it is necessary to apply the concepts related to energy conservation.

In this case the kinetic energy is given as

[tex]KE = \frac{1}{2} mv^2[/tex]

Where,

m = mass

v= Velocity

In the case of heat lost energy (for all 4 wheels) we have to

[tex]Q = mC_p \Delta T \rightarrow 4Q = 4mC_p \Delta T[/tex]

m = mass

[tex]C_p =[/tex] Specific Heat

[tex]\Delta T[/tex]= Change at temperature

For conservation we have to

[tex]KE = Q[/tex]

[tex]\frac{1}{2} mv^2 = 4mC_p \Delta T[/tex]

[tex]\Delta T = \frac{1}{2}\frac{mv^2}{4mC_p}[/tex]

[tex]\Delta T = \frac{1}{2}\frac{(1500)(30)^2}{4(8)(448)}[/tex]

[tex]\Delta T = 47.084\°C \approx 47\°C[/tex]

Therefore the temperature rises in each of the four brake drums around to 47°C

ACCESS MORE