To solve this problem it is necessary to apply the concepts related to energy conservation.
In this case the kinetic energy is given as
[tex]KE = \frac{1}{2} mv^2[/tex]
Where,
m = mass
v= Velocity
In the case of heat lost energy (for all 4 wheels) we have to
[tex]Q = mC_p \Delta T \rightarrow 4Q = 4mC_p \Delta T[/tex]
m = mass
[tex]C_p =[/tex] Specific Heat
[tex]\Delta T[/tex]= Change at temperature
For conservation we have to
[tex]KE = Q[/tex]
[tex]\frac{1}{2} mv^2 = 4mC_p \Delta T[/tex]
[tex]\Delta T = \frac{1}{2}\frac{mv^2}{4mC_p}[/tex]
[tex]\Delta T = \frac{1}{2}\frac{(1500)(30)^2}{4(8)(448)}[/tex]
[tex]\Delta T = 47.084\°C \approx 47\°C[/tex]
Therefore the temperature rises in each of the four brake drums around to 47°C