Answer:
(a) Power= 207.97 kW
(b) Range= 5768.6 meter
Explanation:
Given,
Mass of bullet, [tex]m=0.02 kg[/tex]
Kinetic energy imparted, [tex]K=1200 J[/tex]
Length of rifle barrel, [tex]d=1 m[/tex]
(a)
Let the speed of bullet when it leaves the barrel is [tex]v[/tex].
Kinetic energy, [tex]K=\frac{1}{2} mv^{2}[/tex]
[tex]v=\sqrt{\frac{2K}{m} }[/tex]
[tex]=\sqrt{\frac{2\times1200}{0.02} }[/tex]
[tex]=346.4m/s[/tex]
Initial speed of bullet, [tex]u=0[/tex]
The average speed in the barrel, [tex]v_a_v_g=\frac{u+v}{2}[/tex]
[tex]=\frac{0+346.4}{2} \\=173.2 m/s[/tex]
Time taken by bullet to cross the barrel, [tex]t=\frac{d}{v} [/tex]
[tex]=\frac{1}{173.2}\\ =0.00577 second[/tex]
Power, [tex]P_a_v_g=\frac{W}{t}[/tex]
[tex]=\frac{1200}{0.00577} \\=207.97kW[/tex]
(b)
In projectile motion,
Maximum height, [tex]H_m=\frac{v^2\sin^2\theta}{2g} \\[/tex]
Range, [tex]R=\frac{v^2\sin2\theta}{g}[/tex]
given that, [tex]H_m=R[/tex]
then, [tex]\frac{v^2\sin^2\theta}{2g}=\frac{v^2\sin2\theta}{g}\\\sin^2\theta=2\sin\theta\cos\theta\\\\\tan\theta=4\\\theta=\tan^-^14\\\theta=75.96^0\\R=\frac{v^2\sin2\theta}{g}\\=\frac{346.4^2\times\sin(2\times75.96)}{9.8}\\5768.6 meter[/tex]