contestada

In ΔJKL, k = 3.7 cm, ∠K=15° and ∠L=41°. Find the length of j, to the nearest 10th of a centimeter.

Respuesta :

Answer:

The length of side j is 11.85cm

Step-by-step explanation:

Given that

In triangle JKL,

[tex]\angle k=15[/tex]

[tex]\angle l=41[/tex]

Side k=LJ=3.7cm

To find side j=KL:

By using sine rule,

We can write as

[tex]\frac{SinK}{LJ} = \frac{SinL}{JK} = \frac{SinJ}{KL} \\\frac{Sin15}{3.7} = \frac{Sin41}{JK} = \frac{SinJ}{KL}[/tex]

Using property of triangle,

[tex]\angle k+\angle l+\angle j=180[/tex]

[tex]15+41+\angle j=180[/tex]

[tex]\angle j=124[/tex]

[tex]\frac{Sin15}{3.7} = \frac{Sin41}{JK} = \frac{Sin124}{KL}\\\frac{Sin15}{3.7} = \frac{Sin124}{KL}\\KL=3.7\frac{Sin124}{Sin15}\\KL=3.7\frac{0.8290}{0.2588}\\KL=11.85cm[/tex]

Thus,

The length of side j is 11.85cm

Answer: 11.9

Step-by-step explanation:

nearest 10th you have to round it

ACCESS MORE