Respuesta :
Answer:
The length of side j is 11.85cm
Step-by-step explanation:
Given that
In triangle JKL,
[tex]\angle k=15[/tex]
[tex]\angle l=41[/tex]
Side k=LJ=3.7cm
To find side j=KL:
By using sine rule,
We can write as
[tex]\frac{SinK}{LJ} = \frac{SinL}{JK} = \frac{SinJ}{KL} \\\frac{Sin15}{3.7} = \frac{Sin41}{JK} = \frac{SinJ}{KL}[/tex]
Using property of triangle,
[tex]\angle k+\angle l+\angle j=180[/tex]
[tex]15+41+\angle j=180[/tex]
[tex]\angle j=124[/tex]
[tex]\frac{Sin15}{3.7} = \frac{Sin41}{JK} = \frac{Sin124}{KL}\\\frac{Sin15}{3.7} = \frac{Sin124}{KL}\\KL=3.7\frac{Sin124}{Sin15}\\KL=3.7\frac{0.8290}{0.2588}\\KL=11.85cm[/tex]
Thus,
The length of side j is 11.85cm