Answer:
[tex]P=4x\sqrt{26}\ units[/tex]
Step-by-step explanation:
we know that
The sides of a rhombus are all congruent and the diagonals are perpendicular bisectors of each other
so
Applying the Pythagorean Theorem
[tex]c^2=a^2+b^2[/tex]
where
c is the length side of the rhombus
a and b are the semi-diagonals
we have
[tex]a=2x/2=x\ units\\b=10x/2=5x\ units[/tex]
substitute the values
[tex]c^2=x^2+(5x)^2[/tex]
[tex]c^2=26x^2[/tex]
[tex]c=x\sqrt{26}\ units[/tex]
To find out the perimeter of the rhombus multiply the length side by 4
[tex]P=(4)(x\sqrt{26})[/tex]
[tex]P=4x\sqrt{26}\ units[/tex]