Respuesta :

Answer:

[tex]P=4x\sqrt{26}\ units[/tex]

Step-by-step explanation:

we know that

The sides of a rhombus are all congruent and the diagonals are perpendicular bisectors of each other

so

Applying the Pythagorean Theorem

[tex]c^2=a^2+b^2[/tex]

where

c is the length side of the rhombus      

a and b are the semi-diagonals

we have

[tex]a=2x/2=x\ units\\b=10x/2=5x\ units[/tex]

substitute the values

[tex]c^2=x^2+(5x)^2[/tex]

[tex]c^2=26x^2[/tex]

[tex]c=x\sqrt{26}\ units[/tex]

To find out the perimeter of the rhombus multiply the length side by 4

[tex]P=(4)(x\sqrt{26})[/tex]

[tex]P=4x\sqrt{26}\ units[/tex]

RELAXING NOICE
Relax