Maria is filling a bucket of water from a faucet. After she turns it on, she sees that the cross-sectional area of the water stream right below the faucet is about the size of a quarter, or 4.62×10^4 m2. The stream constricts to about the size of a dime, or 2.52×10^4 m2, after falling 2.50 cm. If the bucket Maria is filling has a volume of 10.0 L, how long will it take to fill the bucket?

Respuesta :

Answer:

t = 47.62 sec

Explanation:

Given data;

[tex]A_1 = 4.62 \times 10^4 m^2[/tex]

[tex]A_2 = 2.52 \times 10^4 m^2[/tex]

h = 2.50 cm

volume 10 L

from

[tex]A_1 v_1 = A_2 v_2[/tex]

[tex]4.62 \times 10^4 v_1 = 2.52 \times 10^4 v_2[/tex]

[tex]4.62 v_1 = 2.52 v_2[/tex] ......1

from bernoulli eq

[tex]P_1 + \frac{1}{2} \rho v_1^2 + \rho g h = P_2 + \frac{1}{2} \rho v_2^2 [/tex]

[tex]P_1 =P_2 = P_{atm}[/tex]

[tex]v_2^2 = v_1^2 +2gh[/tex] ... 2

from 1 and 2 equation

[tex]v_1 = 0.46 m/s[/tex]

volume flow rate is

[tex]Q = A_1 \times v_1 = 4.62 \times 10^[-4} v_1 = 2.1 \times 10^{-4} m^3/s[/tex]

[tex]t  = \frac{v}{Q} [/tex]

[tex]t =\frac{10\times 10^{-3}}{2.1 \times 10^{-4}} = 47.62 s[/tex]

Answer:

The time is [tex]4.76\times10^{-7}\ sec[/tex]

Explanation:

Given that,

Area [tex]A_{1}=4.62\times10^{4}\ m^2[/tex]

Area [tex]A_{2}=2.52\times10^{4}\ m^2[/tex]

Height = 2.50 cm

Volume = 10.0 L

We need to calculate the speed

Using equation of continuity

[tex]A_{1}v_{1}=A_{2}v_{2}[/tex]

Put the value into the formula

[tex]4.62\times10^{4}\times v_{1}=2.52\times10^{4}\times v_{1}[/tex]

[tex]4.62v_{1}=2.52v_{2}[/tex].....(I)

[tex]v_{1}=\dfrac{2.52}{4.62}v_{2}[/tex]

[tex]v_{1}=0.545v_{2}[/tex]

Now, using Bernoulli equation

[tex]P_{1}+\dfrac{1}{2}\rhi\times v_{1}^2+\rho gh=P_{2}+\dfrac{1}{2}\rhi\times v_{2}^2[/tex]

Here, [tex]P_{1}=P_{2}=P_{atm}[/tex]

[tex]v_{2}^2=v_{1}^2+2gh[/tex].....(II)

Put the value [tex]v_{1}[/tex] into the formula

[tex]v_{2}^2=(0.545v_{2})^2+2\times9.8\times2.50\times10^{-2}[/tex]

[tex]v_{2}^2=0.297v_{2}^2+0.49[/tex]

[tex]v_{2}^2(1-0.297)=0.49[/tex]

[tex]v_{2}=\sqrt{\dfrac{0.49}{0.703}}[/tex]

[tex]v_{2}=0.835\ m/s[/tex]

Put the value of [tex]v_{2}[/tex] in the equation (I)

[tex]v_{1}=0.545\times0.835[/tex]

[tex]v_{1}=0.46\ m/s[/tex]

We need to calculate the flow rate

Using formula of flow rate

[tex]Q=A_{1}v_{1}[/tex]

[tex]Q=(4.62\times10^{4})\times0.46[/tex]

[tex]Q=2.1\times10^{4}\ m^3/s[/tex]

We need to calculate the time

Using formula of time

[tex]t = \dfrac{V}{Q}[/tex]

Put the value into the formula

[tex]t=\dfrac{10.0\times10^{-3}}{2.1\times10^{4}}[/tex]

[tex]t=4.76\times10^{-7}\ sec[/tex]

Hence, The time is [tex]4.76\times10^{-7}\ sec[/tex]

ACCESS MORE